Jeffrey C. Grossman

Carl Richard Soderberg Associate Professor of Power Engineering

Department of Materials Science and Engineering

Department of Mechanical Engineering

Phone: 617-324-3566

email: This e-mail address is being protected from spambots. You need JavaScript enabled to view it.

Address: 13-5049, 77 Massachusetts Ave., Cambridge MA 02139

Research Interests:

My overall strategy and approach to scientific problems is to use theory and simulation to gain fundamental understanding, develop new insights based on this understanding, and use these insights to develop new materials with improved properties – working closely with experimental groups at each step.


In general, I strive to apply cutting-edge algorithm development to outstanding science and technology challenges, with emphasis on understanding and predicting new materials for advances in energy conversion, energy storage, thermal transport, surface phenomena, and synthesis.  My approach does not necessarily rely on a single method to solve a given problem nor do I favor one computational approach over another; rather, I believe in using the best method(s) available and those most suited to tackle the challenge at hand.  The vision I set for my research program includes a strong emphasis on a multidisciplinary approach in order to expand the scientific possibilities beyond any one discipline or field, and to allows students in my group to gain exposure to a broad intersection of computational materials science.


Whenever possible I strive to work on problems related to materials that are directly relevant to global challenges; therefore in addition to cross-disciplinary collaborations related to my research goals, I actively pursue key partnerships with colleagues from both academia and industry in order to work on materials breakthroughs that could one day be scalable, robust and compatible with existing infrastructure and manufacturing to the extent possible. Unsolved fundamental scientific problems will have a tremendous impact on many of the global challenges we face today, such as those related to energy and the environment. For example, the limits of quantum efficiency in abundant materials, the limits of energy density for storage materials, and the limits of thermal transport, are all largely unknown in many materials and yet critically important to their behavior. 


I am also interested in the general topic of how we do science and how we can do it better. Here are some thoughts on the need to lower the boundaries between basic and applied research, and here is an idea for improving interdisciplinary idea generation.